Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606455

RESUMO

Fast-scan cyclic voltammetry (FSCV) is a widely used technique for detecting neurotransmitters. However, electrode fouling can negatively impact its accuracy and sensitivity. Fouling refers to the accumulation of unwanted materials on the electrode surface, which can alter its electrochemical properties and reduce its sensitivity and selectivity. Fouling mechanisms can be broad and may include biofouling, the accumulation of biomolecules on the electrode surface, and chemical fouling, the deposition of unwanted chemical species. Despite individual studies discussing fouling effects on either the working electrode or the reference electrode, no comprehensive study has been conducted to compare the overall fouling effects on both electrodes in the context of FSCV. Here, we examined the effects of biofouling and chemical fouling on the carbon fiber micro-electrode (CFME) as the working electrode and the Ag/AgCl reference electrode with FSCV. Both fouling mechanisms significantly decreased the sensitivity and caused peak voltage shifts in the FSCV signal with the CFME, but not with the Ag/AgCl reference electrode. Interestingly, previous studies have reported peak voltage shifts in FSCV signals due to the fouling of Ag/AgCl electrodes after implantation in the brain. We noticed in a previous study that energy-dispersive spectroscopy (EDS) spectra showed increased sulfide ion concentration after implantation. We hypothesized that sulfide ions may be responsible for the peak voltage shift. To test this hypothesis, we added sulfide ions to the buffer solution, which decreased the open circuit potential of the Ag/AgCl electrode and caused a peak voltage shift in the FSCV voltammograms. Also, EDS analysis showed that sulfide ion concentration increased on the surface of the Ag/AgCl electrodes after 3 weeks of chronic implantation, necessitating consideration of sulfide ions as the fouling agent for the reference electrodes. Overall, our study provides important insights into the mechanisms of electrode fouling and its impact on FSCV measurements. These findings could inform the design of FSCV experiments, with the development of new strategies for improving the accuracy and reliability of FSCV measurements in vivo.

2.
Brain Stimul ; 16(5): 1377-1383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37716638

RESUMO

BACKGROUND: Temporal interference stimulation (TIS) is a neuromodulation technique that could stimulate deep brain regions by inducing interfering electrical signals based on high-frequency electrical stimulations of multiple electrode pairs from outside the brain. Despite numerous TIS studies, however, there has been limited investigation into the neurochemical effects of TIS. OBJECTIVE: We performed two experiments to investigate the effect of TIS on the medial forebrain bundle (MFB)-evoked phasic dopamine (DA) response. METHODS: In the first experiment, we applied TIS next to a carbon fiber microelectrode (CFM) to examine the modulation of the MFB-evoked phasic DA response in the striatum (STr). Beat frequencies and intensities of TIS were 0, 2, 6, 10, 20, 60, 130 Hz and 0, 100, 200, 300, 400, 500 µA. In the second experiment, we examined the effect of TIS with a 2 Hz beat frequency (based on the first experiment) on MFB-evoked phasic DA release when applied above the cortex (with a simulation-based stimulation site targeting the striatum). We employed 0 Hz and 2 Hz beat frequencies and a control condition without stimulation. RESULTS: In the first experiment, TIS with a beat frequency of 2 Hz and an intensity of 400 µA or greater decreased MFB-evoked phasic DA release by roughly 40%, which continued until the experiment's end. In contrast, TIS at beat frequencies other than 2 Hz and intensities less than 400 µA did not affect MFB-evoked phasic DA release. In the second experiment, TIS with a 2 Hz beat frequency decreased only the MFB-evoked phasic DA response, but the reduction in DA release was not sustained. CONCLUSIONS: STr-applied and cortex-applied TIS with delta frequency dampens evoked phasic DA release in the STr. These findings demonstrate that TIS could influence the neurochemical modulation of the brain.


Assuntos
Estimulação Encefálica Profunda , Dopamina , Neostriado , Estimulação Elétrica , Encéfalo
3.
J Neural Eng ; 19(5)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066021

RESUMO

Objective. Temporal interference stimulation (TIS) has shown the potential as a new method for selective stimulation of deep brain structures in small animal experiments. However, it is challenging to deliver a sufficient temporal interference (TI) current to directly induce an action potential in the deep area of the human brain when electrodes are attached to the scalp because the amount of injection current is generally limited due to safety issues. Thus, we propose a novel method called epidural TIS (eTIS) to address this issue; in this method, the electrodes are attached to the epidural surface under the skull.Approach. We employed finite element method (FEM)-based electric field simulations to demonstrate the feasibility of eTIS. We first optimized the electrode conditions to deliver maximum TI currents to each of the three different targets (anterior hippocampus, subthalamic nucleus, and ventral intermediate nucleus) based on FEM, and compared the stimulation focality between eTIS and transcranial TIS (tTIS). Moreover, we conducted realistic skull-phantom experiments for validating the accuracy of the computational simulation for eTIS.Main results. Our simulation results showed that eTIS has the advantage of avoiding the delivery of TI currents over unwanted neocortical regions compared with tTIS for all three targets. It was shown that the optimized eTIS could induce neural action potentials at each of the three targets when a sufficiently large current equivalent to that for epidural cortical stimulation is injected. Additionally, the simulated results and measured results via the phantom experiments were in good agreement.Significance. We demonstrated the feasibility of eTIS, facilitating more focalized and stronger electrical stimulation of deep brain regions than tTIS, with the relatively less invasive placement of electrodes than conventional deep brain stimulation via computational simulation and realistic skull phantom experiments.


Assuntos
Estimulação Encefálica Profunda , Estimulação Transcraniana por Corrente Contínua , Animais , Encéfalo/fisiologia , Simulação por Computador , Eletrodos , Estudos de Viabilidade , Humanos , Couro Cabeludo , Estimulação Transcraniana por Corrente Contínua/métodos
4.
Sensors (Basel) ; 21(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34695942

RESUMO

Numerous brain-machine interface (BMI) studies have shown that various frequency bands (alpha, beta, and gamma bands) can be utilized in BMI experiments and modulated as neural information for machine control after several BMI learning trial sessions. In addition to frequency range as a neural feature, various areas of the brain, such as the motor cortex or parietal cortex, have been selected as BMI target brain regions. However, although the selection of target frequency and brain region appears to be crucial in obtaining optimal BMI performance, the direct comparison of BMI learning performance as it relates to various brain regions and frequency bands has not been examined in detail. In this study, ECoG-based BMI learning performances were compared using alpha, beta, and gamma bands, respectively, in a single rodent model. Brain area dependence of learning performance was also evaluated in the frontal cortex, the motor cortex, and the parietal cortex. The findings indicated that BMI learning performance was best in the case of the gamma frequency band and worst in the alpha band (one-way ANOVA, F = 4.41, p < 0.05). In brain area dependence experiments, better BMI learning performance appears to be shown in the primary motor cortex (one-way ANOVA, F = 4.36, p < 0.05). In the frontal cortex, two out of four animals failed to learn the feeding tube control even after a maximum of 10 sessions. In conclusion, the findings reported in this study suggest that the selection of target frequency and brain region should be carefully considered when planning BMI protocols and for performing optimized BMI.


Assuntos
Interfaces Cérebro-Computador , Córtex Motor , Animais , Encéfalo , Eletrocorticografia , Eletroencefalografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...